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Abstract. In this paper, we present an algorithm for multi-view recog-
nition in a distributed camera setting that learns which viewpoints are
most discriminative for particular instances of ambiguity. Our method
is built on top of 2D recognition algorithms and casts view selection
as the problem of optimizing kernel weights in multiple kernel learning.
The main contribution is a locality-sensitive meta-training step to learn
a disambiguation function to select the relative weighting of available
viewpoints needed to classify a 2D input example. Our method outper-
forms related approaches on benchmark multi-view action recognition
data sets.

1 Introduction

Multi-view human action recognition is an active area of research with applica-
tions to surveillance, robotics, and human-computer interaction. Figure 1 shows
a scene captured from multiple cameras with two tracked people, where the goal
is to recognize the actions of each tracked person. In general, there are two main
approaches to recognition from multiple viewpoints: integrate data from all the
views to build a 3D model and solve a 3D recognition problem, or consider some
combination of multiple 2D views. In general, 3D approaches tend to perform
well, but require unobstructed views and, usually, a high computational cost for
3D model construction or finding correspondences. For the 2D case, a major
challenge is caused by the unknown relative viewpoint or pose of the object,
whereby instances from the same class may appear different from different view-
points, while, from other viewpoints, instances from different classes may appear
similar.

Our approach is applicable to distributed camera networks for human activity
understanding (e.g., Figure 1). In particular, we consider architectures with peer
camera nodes, where for a given target, there is a primary camera and the
rest of the camera nodes are secondary. This designation can be fixed, where a
particular camera is primary for targets in a specified region, or dynamic, e.g.,
the primary camera is selected to track a target [1]. In either case, secondary
views are represented by their relative offset from the primary camera.

Our focus is to only incorporate secondary views when necessary by learning
a model that recognizes potentially confusing poses and determines the relative
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Fig. 1. In distributed camera networks, some viewpoints are more discriminative for
action recognition. Our method learns which viewpoints are most discriminative for
particular instances of ambiguity.

value of secondary viewpoints for disambiguation. That is, we not only deter-
mine if information from additional viewpoints is needed, but which viewpoints
would provide the most discriminative power. Our two-stage learning algorithm
casts the problem of combining views as that of learning weights for multiple
kernel learning (MKL), and we build off the efficient algorithms that have been
developed for MKL.

2 Related Work

The idea of using information from one view to inform view selection is often
framed as active vision [2], usually in the context of a mobile agent. For example,
in [3], agents perform object recognition using entropy maps, which model the
predicted suitability of potential viewpoints to help determine the object. This
differs from the distributed camera setting, in that active vision approaches
are typically carried out in a sequential fashion (during, for example, robot
navigation), while all the views are available simultaneously in multi-camera
networks. For multi-view action recognition [4], there are two broad categories
of methods: (1) 3D methods, which explicitly build a 3D model, and (2) 2D
methods, like ours, which may incorporate multiple 2D views, but do not build
3D models.

3D action descriptors include motion history volumes [5, 6], a compact rep-
resentation of the animated visual hull of a person performing an action. While
complex 3D models often achieve high recognition rates, they also tend to be
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computationally expensive. A recent hybrid 2D / 3D approach determines the
best viewpoint of an action in isolation after constructing a 3D model [7]. This
approach differs from ours in that it is focused on finding the single best view
from the perspective of a human observer, while our method learns how to
combine views to improve recognition. Other hybrid approaches that include
strong 3D correspondences during the training phase include methods designed
for cross-view recognition (e.g., [8, 9]), which is a version of multi-view recogni-
tion where synchronized views from all views are not available for both training
and testing.

For 2D multi-view recognition, there are a variety of approaches. One method
models 2D feature descriptors as a function of viewpoint [10]. Farhadi et al. dis-
tinguish between geometric and discriminative aspect, where geometric aspect
corresponds to canonical views (front, side), while discriminative aspect encodes
the ways in which different things look similar or different [11]. Their method
learns the parameters governing these latent variables and weights features ac-
cordingly to improve classification. These approaches of specifically learning a
viewpoint manifold or discriminative aspect model are very different from ours
in that we do not learn to distinguish viewpoints, but instead seek to recognize
when additional viewpoints are needed and their relative utility. A number of
approaches seek to identify view-invariant features (e.g., [12]) or extract fea-
tures that exhibit low intra-class, but high inter-class variation (e.g., [13]). Our
method is agnostic to the base feature; rather than relying on view-invariance,
our method learns cases where disambiguation is needed.

In Section 3, we describe our classification approach and how we cast the
view combination problem as kernel weight learning. By applying a kernel-based
approach, our method is applicable to a variety of feature transforms used in ac-
tion recognition, and in Section 4, we show high recognition rates on benchmark
datasets for multi-view action recognition.

3 Approach

Figure 2 presents an overview of our approach to example disambiguation.1 Each
example, Xi = 〈xi,0, . . . ,xi,V−1〉 represents V videos of a particular action in-
stance captured by a primary camera, xi,0, and V −1 secondary cameras, ordered
by their offset to the primary camera (as shown in Figure 3). As illustrated in
Figure 3, each instance of an action could represent up to V different training
examples corresponding to each of the V cameras serving as the primary camera.
Each example Xi has class label yi. In this section, we describe our approach
to identifying ambiguous examples, learning to disambiguate, and training the
combined classifier. Finally we describe the complete algorithm in Section 3.3.

1 For illustration, Figure 2 depicts a 2-dimensional feature space, but each step of our
procedure can be kernelized, so a direct feature vector representation of the data is
not necessary.
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Fig. 2. The recognition procedure. For training, (1,2) the videos from all views are
clustered. Some clusters (e.g., blue and orange) are homogeneous, while others (e.g.,
gray) contain examples from multiple classes. (3) In non-homogeneous clusters, sec-
ondary views are identified for each instance (green and purple arrows). (4) A classifier
is trained that simultaneously learns the relative weights of each view for each cluster
(represented by arrow thickness). For testing, (5,6) the input is assigned to a cluster.
(7) If the cluster is non-homogeneous, secondary views are obtained, and (8) the input
is classified using the weighted model learned for the cluster.

3.1 Identifying Ambiguous Examples

The first step toward estimating view utility is identifying examples that are
similar in appearance, but may represent different classes. Let κ(x,x′) be a ker-
nel function, which we refer to as the base kernel that can be applied to the
video feature representation. Using κ, we perform kernel k-means (KKM) [14] to
partition the training data into C clusters, where each primary video, xi,0, re-
ceives cluster label ci ∈ [1, C]. Even though KKM is unsupervised, with modern
feature transforms designed for discriminative action recognition, a significant
fraction of the clusters are homogeneous, containing only examples from a single
class. These clusters demarcate regions of the feature space where input from
a single, primary camera is sufficient for classification. However, the remaining
heterogeneous clusters contain examples from multiple classes nearby in feature
space, representing border cases that would typically be misclassified using stan-
dard classification methods. In each cluster, we will learn the relative utility of
the secondary views for disambiguating the input (Section 3.2).

To disambiguate test examples, an efficient method to assign new examples
to clusters is needed. Using the training examples, corresponding cluster labels
{ci}, and base kernel, κ, a support vector machine (SVM) is trained for cluster
assignment classification. Methods exist for unsupervised support vector clus-
tering that return support vectors suitable for cluster assignment classification.
However, these methods tend to return large numbers of support vectors [15],
so this two-stage (cluster-then-classification) approach can be more efficient for
evaluating the SVM at run-time.

A common approach to handling multiple representations of the same object
is feature vector concatenation. For multi-view recognition, this corresponds to
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Fig. 3. For a given primary view, the offsets to other cameras are relative. The same
instance of an action leads to different feature representations depending on which
camera is selected as primary. On the left, selecting the red camera to be primary leads
to Xj , while, on the right, selecting the purple camera as primary leads to Xk. With
recorded data, during the training phase, each instance of an action could represent
up to V different examples. For testing, the primary camera is determined as part of
distributed network sensing. (Figure best viewed in color.)

concatenating the feature representations of the same action from different view-
points. One drawback to using this combined representation directly in a stan-
dard supervised learning scheme is that multiple viewpoints are incorporated
even if one of the viewpoints is highly discriminative, and, worse, the addition
of a difficult, ambiguous feature vector to the joint representation can result in
misclassification in some cases. Our approach, for a given ambiguity, is to learn
the relative utility of secondary viewpoints for discrimination. The rest of this
section explains how we cast the problem of estimating view offset utility as
kernel weight learning.

3.2 Learning Discriminative View Combinations

For kernel-based methods, such as support vector machines (SVM), selecting an
appropriate kernel function is a key step. There are a number of common choices
(e.g., linear, RBF) and custom kernels (e.g., spatial pyramid kernel [16] for sets
of local image features). Multiple kernel learning (MKL) has emerged as an
alternative to simply selecting a single kernel function, with multiple approaches
to learning weighted combinations of kernels [17]. MKL is often used to fuse
different types of features, and has been used in this way for action recognition
(e.g., [18]). By contrast, we propose to use multiple kernel learning for weighted
view selection, rather than feature weighting.

Kernel functions can be combined; for example, a linear combination of ker-
nels is itself a kernel. That is, κβ(·) =

∑M
i=1 βiκi(·), where β is a vector of weights

for M kernels, {κi}. In the case of convex β (i.e., β ∈ RM+ and
∑
βi = 1), the

weights represent the importance of each kernel and the combined kernel rep-
resents the similarity in a feature space defined by the concatenation of the
individual feature vectors. While most of the focus in MKL has been on linear
combinations of kernels, recent work [19] with nonlinear kernel combinations has
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shown they can be more effective. For our approach, we use the quadratic kernel:

κβ(Xi,Xj) =

V−1∑
m=0

V−1∑
l=0

βmβlκ(xi,m,xj,m)κ(xi,l,xj,l) (1)

where each kernel represents one of the viewpoints in the system.
Many approaches to multiple kernel learning incorporate the problem of

learning kernel weights with the optimization of the classification margin. How-
ever, as the complexity of the kernel combination increases, so does the complex-
ity of the resulting optimization problem. For example, incorporating Equation 1
into the usual SVM optimization leads to a difficult non-convex optimization.
We apply an iterative approach [20], modified for SVM [17], to this MKL opti-
mization:

min
β∈M

max
α∈RN

∑
i

αi −
1

2

∑
i,j

αiαjyiyjκβ(Xi,Xj) (2)

where M is the norm-1 bounded set which constrains β to be convex. This
optimization can be solved iteratively, alternately finding α by solving the in-
ner SVM problem with the current combined kernel, κβ , and then finding the
weights, β, using projection-based gradient descent.

3.3 Algorithm

Training Consider a set of N actions, each captured from V different viewpoints.
This gives a training set of N ×V labeled examples, where example Xi has class
label yi. Let κ(x,x′) be the base kernel, which can be applied to the video feature
representation. The two-stage training procedure is as follows:
1. Cluster the training videos to learn cluster labels {ci}.

(a) Using the base kernel, κ, and cluster labels, train cluster assignment
SVM, Ccluster.

(b) For homogeneous clusters, no further work is needed.
2. For each non-homogeneous cluster, ci, train multi-class SVM classifier (Equa-

tion 2), Cci , and learn cluster weights, βci , with the classes represented in
cluster ci.

Classification Given a new query example (action captured from V different
views), Xq, the classification procedure follows an analogous two-stage approach.
1. Using SVM, Ccluster, get cluster, cq, for xq,0.
2. Classify xq,0:

(a) If cq is homogeneous, Xq is classified immediately.
(b) Otherwise, Xq is classified using SVM Ccq , and cluster-specific weights,

βcq .
Using this locality-sensitive approach, similar to [21], kernel combinations can be
applied in a data-dependent fashion rather than learning a global combination
across the whole input space.
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4 Results

We evaluated our method on three publicly-available multi-view recognition
datasets. Our algorithm was implemented in Matlab on a standard PC, using
libsvm [22] for support vector classification. For multi-class classification, we
use the one-versus-all (OVA) approach. The SVM cost parameter, CSVM , was
selected using cross-validation for each experiment. For clustering, we initial-
ized kernel k-means 25 times and selected the cluster assignment with minimum
energy, as measured by average intra-class similarity.

4.1 Action Recognition

Our approach is neither specific to particular camera configurations nor video
feature representations. We evaluated our algorithm using two widely-used multi-
view human action datasets with two different feature representations.

Data Sets For these experiments, we used the the i3DPost multi-view human
action data set [23] and the INRIA Xmas Motion Acquisition Sequences (IX-
MAS) data set [5]. i3DPost includes 10 actions performed by 8 actors recorded
by 8 synchronized cameras. IXMAS, which is commonly used as a benchmark
for multi-view action recognition, contains multiple actors performing various ac-
tions, captured by five synchronized cameras. Compared with i3DPost, IXMAS
is more challenging, containing fewer cameras, more easily confused actions,
and more instances of self occlusion. Figure 4 shows sample frames from both
datasets.

Fig. 4. Example frames from the i3Dpost (top) and IXMAS (bottom) data sets.
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Features To demonstrate the ability of our method to handle different underly-
ing motion features, we used the the Motion Context (MC) transform [24] and
the R Transform Surface (RT) video descriptor [10]. MC computes frame-based
histograms of the localized optic flow and silhouette occupancy. The base kernel
for an image sequence is the histogram intersection kernel on quantized features,
with a dictionary size, |D| = 800. RT is a silhouette-based descriptor that ex-
tends the Radon transform. The base kernel is the Gaussian radial basis function
of the diffusion distance [25] between the base features.

Methods Using the same features, base kernel, and free parameters, we com-
pare the performance of our multi-view learning (mvl) approach to several other
kernel-based schemes for multi-view classification:
View-Insensitive SVM (svm) The basic classifier where the SVM is trained

with the base kernel without respect to viewpoint.
SVM Voting (vote) An example is classified from each viewpoint and the

majority decision serves as the final classification.
Weighted SVM Voting (wvote) Similar to vote, but SVM posterior proba-

bilities [26] are used to weight each vote.
Winner Take All (wta) Using SVM posterior probabilities as a proxy for clas-

sifier confidence, the most confident classifier provides the final classification.
Uniform-Weighting SVM (uwsvm) Each example is represented as the con-

catenation of all the views. This is equivalent to using the uniformly-weighted
convex combination of base kernels for each view representation.

i3Dpost IXMAS
Method RT MC RT MC

mvl 73.75% 96.25% 90.91% 93.58%
uwsvm 72.50% 95.00% 87.27% 92.42%
vote 66.56% 93.75% 81.82% 89.15%
wvote 66.25% 92.50% 75.09% 82.79%
wta 73.75% 93.75% 74.18% 79.39%
svm 63.75% 91.25% 71.88% 77.15%

Wu et al. [18] - 88.2%
Zhu et al. [27] - 88.0%
Parrigan and Souvenir [28] - 84.0%

Table 1. Multi-view classification rates on the i3DPost and IXMAS data sets. (Top)
Rates for our approach, mvl, and kernel-based variants using two different feature
representations (RT & MC). (Bottom) Representative recognition rates reported in
the literature on IXMAS using the same experimental protocol.

Results Table 1 shows the multi-view classification rates for both data sets with
both feature representations. In general, our method, mvl, outperformed compet-
ing approaches, except for an unusual case where an otherwise under-performing
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method, wta, matched our performance for a particular feature-dataset combi-
nation.
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Fig. 5. Distribution of class labels in clusters for i3DPost. In most cases, clusters were
either homogeneous (e.g., clusters 8 and 12 contain only wave actions) or represented
specific instances of ambiguity (e.g., run and run-fall tend to co-cluster).

For i3DPost, we employed 2-fold cross-validation, with half the actors in each
set, and included 4 views and 10 actions. For both features, mvl returned the
highest classification rates (except as noted above), improving on the baseline
kernel classification by up to 10%. Figure 5 shows an example from an experiment
with 20 clusters and the MC features. Several of the clusters are homogeneous.
For example, cluster 1 contains only run-jump-walk actions, while clusters 8 and
12 contain only wave actions. Overall in this experiment, 34% of test exam-
ples fell into homogeneous clusters, which results in immediate (single-camera)
classification and computational savings compared to the other aggregation ap-
proaches that always incorporate each viewpoint.

There does not appear to be a commonly-used experimental protocol in the
literature for i3Dpost. To our knowledge, the best reported accuracy is 97.50%
using a full 3D (not 2D multi-view) approach [29]. In addition to the inherent
complexity of 3D reconstruction, this method uses leave-one-actor-out (LOAO)
cross-validation, where for each fold, a single actor is used for testing, while
the remainder are used for training. With LOAO on i3DPost, our mvl method
also resulted in 97.50% accuracy. However, the other multi-view methods also
performed well, so this may be a function of the complexity of the dataset rather
than the effectiveness of the classification approaches.

Compared to i3Dpost, IXMAS contains more self-occlusion and similar-looking
actions. For IXMAS, we followed the LOAO protocol, which is the experimental
setup most commonly found in the literature (see, e.g., [30]). The experiment
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uses 10 actors, each performing one of 11 actions three times. As shown in Ta-
ble 1, mvl far outperforms the baseline svm and voting approaches. While the
MC feature outperformed RT on each test, our method boosted the performance
of both feature descriptors. The 93.58% classification accuracy achieved by our
mvl approach not only out-performs other recent 2D methods, it approaches
the performance of 3D approaches, but without the computational expense of
building 3D models.
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Fig. 6. Confusion matrix for mvl classification on IXMAS data. Each row represents
the actual class and each column represents the predicted class. Our method achieved
93.58% accuracy.

For mvl, Figure 6 shows the confusion matrix for the classification experiment
on IXMAS with the MC feature, where each row represents the actual class and
each column represents the predicted class. For many actions (e.g., sit, stand,
turn, walk, pickup), accuracy was above 95%. The most challenging cases in-
volved confusions between waving, punching, and scratching head. These results
are expected as the base descriptors are primarily silhouette-based, and these
motions include self-occlusion from most viewpoints. Additionally, by comparing
the per-class accuracies between mvl and the best-performing 2D method from
the literature [18], we find that the achieved per-class accuracy for eight of the
actions is similar (and relatively high). However, for three actions (check watch,
cross arms, scratch head), our method shows noticeable gains: from 78% to 93%
for check watch, 83% to 97% for cross arms, and 72% to 77% for scratch head.
This suggests that the superior performance of mvl is mainly due to correctly
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classifying the most challenging cases of confusion, which, for our approach, tend
to fall in heterogeneous clusters.
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Fig. 7. Distribution of class labels in clusters for IXMAS. In most cases, clusters were
either homogeneous (e.g., clusters 35 and 42 contain only sit actions) or represented
specific instances of ambiguity (e.g., check watch, cross arms, wave, and scratch head
tend to co-cluster).

As the same base kernel was used for both clustering and classification, the
clustering step provides an initial partition of the data into groups that are
either mostly homogeneous with regards to the class of the examples or require
disambiguation. For the IXMAS data with C = 50 clusters and RT feature,
Figure 7 shows the distribution of class labels in each cluster. It can be seen that
the classes that resulted in the highest recognition rates (e.g., sit, stand, turn)
tend to lie in homogeneous clusters. For example, clusters 35 and 42 contain only
sit actions, while cluster 7 contains only turn. By contrast, classes that were more
likely to be confused by our method tend to lie in more heterogeneous clusters.
The most frequently confused action, punch, is present in 28 of the 50 clusters
in this experiment.

Figure 8 shows examples views of actions that were co-clustered during an
experiment. The top row contains examples from a cluster containing primar-
ily kick and walk motions. From the given viewpoint, these actions are visu-
ally similar and indistinguishable for most feature transforms. The bottom row
shows examples from a cluster containing punches and kicks from a viewpoint
directly overhead. In this case, the silhouette-based descriptors are similar for
these semantically different actions. However, incorporating almost any of the
other viewpoints would serve to disambiguate this confusion and correctly clas-
sify these actions. Figure 9 shows two examples of the weighting learned by our
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Kick Walk Walk

Punch Kick Kick

Fig. 8. Each row shows a set of three example frames from viewpoints that were co-
clustered by our algorithm. The label indicates the action represented.

method for secondary views. For each row, the left image is a frame from an
action that was not immediately classified. The next three images show frames
from secondary viewpoints, sorted in order of weights learned by our method.
The highest weighted viewpoint often corresponds to views that are highly dis-
criminative, with minimal self-occlusion.

Fig. 9. For each row, the left image is a frame from an action that was not immediately
classified. The following images show frames from secondary viewpoints, sorted in order
of weights learned by our method.
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Fig. 10. Example images from the 3DO data set.

4.2 Object Recognition

While our method was originally intended for action recognition from video,
we also applied it to object recognition from images. The 3D object data set
(3DO) [31] consists of examples of 10 object categories from several different
views, elevations, and scales. Figure 10 shows some example images from the
data set. We selected a subset of seven categories for which 10 examples were
available with four different views at the same elevation and scale (bicycle, car,
cellphone, head, iron, monitor, and mouse). For each image, we calculated SIFT
descriptors for 16× 16 patches on a regular grid, with a spacing of 8, and used
the Spatial Pyramid [16] (number of levels, L = 3, and the vocabulary size,
M = 200) as the base kernel. For evaluation, we divided the data in half and
performed 2-fold testing. The basic svm approach achieved 81.43% accuracy.
Integrating multiple views was beneficial as vote achieved 87.50% accuracy.
Our approach, mvl, achieved 90.71% accuracy. 2 Like the action recognition
data, classification ambiguity in this data set appears to be tied to ambiguous
viewpoints. Figure 11 shows an example of co-clustered object views. Unlike the
examples for action recognition, for this data set, it is not always apparent that
co-clustered images should share similar feature representations. Nonetheless,
the results demonstrate that incorporating weighted view aggregation provides
additional discriminative power.

Fig. 11. Example images that were co-clustered by our method.

2 We were unable to directly compare these results with those previously reported.
Unlike with the IXMAS set, there is little agreement in the literature on an experi-
mental protocol for 3DO.
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5 Conclusions and Future Work

In this paper, we presented a multi-view recognition method for identifying when
input is ambiguous and learning the relative utility of secondary views as a func-
tion of the particular ambiguity. We cast the problem of viewpoint weighting
as kernel weight optimization for multiple kernel learning, localized in feature
space, and took advantage of efficient solutions in the MKL domain. A significant
amount of research effort in the action recognition domain focuses on devising
new, more discriminative, feature representations. However, by applying a strat-
egy to account for the inherent ambiguity in certain poses from certain view-
points, our method boosted the performance of existing features and achieved
high recognition accuracy on a benchmark action recognition data set, outper-
forming other recent 2D multi-camera methods, and similar to 3D approaches,
with reduced computational effort. For future work, we plan to investigate early
identification of potentially ambiguous actions and learn the single view shift
that would best disambiguate the input to allow for dynamic camera switching
in distributed camera networks on untrimmed video.
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